## Show all work that leads to your answers!

1. $\int_{2}^{x}\left(3 t^{2}-1\right) d t=$
(A) $x^{3}-x-6$
(B) $x^{3}-x$
(C) $3 x^{2}-12$
(D) $3 x^{2}-1$
(E) $6 x-12$
2. What is the slope of the line tangent to the graph of $y=\ln (2 x)$ at the point where $x=4$ ?
(A) $\frac{1}{8}$
(B) $\frac{1}{4}$
(C) $\frac{1}{2}$
(D) $\frac{3}{4}$
(E) 4
3. If $f(x)=4 x^{-2}+\frac{1}{4} x^{2}+4$, then $f^{\prime}(2)=$
(A) -62
(B) -58
(C) -3
(D) 0
(E) 1
4. $\int_{1}^{2} \frac{d x}{2 x+1}=$
(A) $2 \ln 2$
(B) $\frac{1}{2} \ln 2$
(C) $2(\ln 5-\ln 3)$
(D) $\ln 5-\ln 3$
(E) $\frac{1}{2}(\ln 5-\ln 3)$

5. The figure above shows the graph of the function $f$. Which of the following statements are true?
I. $\lim _{x \rightarrow 2^{-}} f(x)=f(2)$
II. $\lim _{x \rightarrow 6^{-}} f(x)=\lim _{x \rightarrow 6^{+}} f(x)$
III. $\lim _{x \rightarrow 6} f(x)=f(6)$
(A) II only
(B) III only
(C) I and II only
(D) II and III only
(E) I, II, and III
6. 

The continuous function $f$ is defined on the interval $-5 \leq x \leq 8$. The graph of $f$, which consists of four line segments, is shown in the figure above.
Let $g$ be the function given by $g(x)=2 x+\int_{-2}^{x} f(t) d t$.
(a) Find $g(0)$ and $g(-5)$.
(b) Find $g^{\prime}(x)$ in terms of $f(x)$. For each of $g^{\prime \prime}(4)$ and $g^{\prime \prime}(-2)$, find the value or state that it does not exist.

(c) On what intervals, if any, is the graph of $g$ concave down? Give a reason for your answer.
(d) The function $h$ is given by $h(x)=g\left(x^{3}+1\right)$. Find $h^{\prime}(1)$. Show the work that leads to your answer.

