Show all work that leads to your answers!

$$1. \qquad \int_2^x (3t^2 - 1)dt =$$

- (A) $x^3 x 6$ (B) $x^3 x$ (C) $3x^2 12$ (D) $3x^2 1$ (E) 6x 12

- 2. What is the slope of the line tangent to the graph of $y = \ln(2x)$ at the point where x = 4?
 - (A) $\frac{1}{8}$ (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) $\frac{3}{4}$ (E) 4

3. If
$$f(x) = 4x^{-2} + \frac{1}{4}x^2 + 4$$
, then $f'(2) =$

- (A) -62 (B) -58 (C) -3 (D) 0 (E) 1

$$4. \qquad \int_1^2 \frac{dx}{2x+1} =$$

- (A) $2 \ln 2$ (B) $\frac{1}{2} \ln 2$ (C) $2 (\ln 5 \ln 3)$ (D) $\ln 5 \ln 3$ (E) $\frac{1}{2} (\ln 5 \ln 3)$

- 5. The figure above shows the graph of the function f. Which of the following statements are true?
 - I. $\lim_{x \to 2^{-}} f(x) = f(2)$
 - II. $\lim_{x \to 6^{-}} f(x) = \lim_{x \to 6^{+}} f(x)$
 - III. $\lim_{x \to 6} f(x) = f(6)$
 - (A) II only
 - (B) III only
 - (C) I and II only
 - (D) II and III only
 - (E) I, II, and III

The continuous function f is defined on the interval $-5 \le x \le 8$. The graph of f, which consists of four line segments, is shown in the figure above.

Let g be the function given by $g(x) = 2x + \int_{-2}^{x} f(t) dt$.

- (a) Find g(0) and g(-5).
- (b) Find g'(x) in terms of f(x). For each of g''(4) and g''(-2), find the value or state that it does not exist.
- (c) On what intervals, if any, is the graph of g concave down? Give a reason for your answer.
- (d) The function h is given by $h(x) = g(x^3 + 1)$. Find h'(1). Show the work that leads to your answer.