Show all work that leads to your answers!

1. Free response

Question 3

t (seconds)	0	3	5	8	12
$k(t)$ (feet per second)	0	5	10	20	24

Kathleen skates on a straight track. She starts from rest at the starting line at time $t=0$. For $0<t \leq 12$ seconds, Kathleen's velocity k, measured in feet per second, is differentiable and increasing. Values of $k(t)$ at various times t are given in the table above.
(a) Use the data in the table to estimate Kathleen's acceleration at time $t=4$ seconds. Show the computations that lead to your answer. Indicate units of measure.
(b) Use a right Riemann sum with the four subintervals indicated by the data in the table to approximate $\int_{0}^{12} k(t) d t$. Indicate units of measure. Is this approximation an overestimate or an underestimate for the value of $\int_{0}^{12} k(t) d t$? Explain your reasoning.
(c) Nathan skates on the same track, starting 5 feet ahead of Kathleen at time $t=0$. Nathan's velocity, in feet per second, is given by $n(t)=\frac{150}{t+3}-50 e^{-t}$. Write, but do not evaluate, an expression involving an integral that gives Nathan's distance from the starting line at time $t=12$ seconds.
(d) Write an expression for Nathan's acceleration in terms of t.

Multiple Choice

1. $\int\left(5 e^{2 x}+\frac{1}{x}\right) d x=$
(A) $\frac{5}{2} e^{2 x}+\frac{2}{x^{2}}+C$
(B) $\frac{5}{2} e^{2 x}+\ln |x|+C$
(C) $5 e^{2 x}+\frac{2}{x^{2}}+C$
(D) $5 e^{2 x}+\ln |x|+C$
(E) $10 e^{2 x}-\frac{1}{x^{2}}+C$
2. If $f(x)=\sqrt{x}+\frac{3}{\sqrt{x}}$, then $f^{\prime}(4)=$
(A) $\frac{1}{16}$
(B) $\frac{5}{16}$
(C) 1
(D) $\frac{7}{2}$
(E) $\frac{49}{4}$
3. $\int x^{2}\left(x^{3}+5\right)^{6} d x=$
(A) $\frac{1}{3}\left(x^{3}+5\right)^{6}+C$
(B) $\frac{1}{3} x^{3}\left(\frac{1}{4} x^{4}+5 x\right)^{6}+C$
(C) $\frac{1}{7}\left(x^{3}+5\right)^{7}+C$
(D) $\frac{3}{7} x^{2}\left(x^{3}+5\right)^{7}+C$
(E) $\frac{1}{21}\left(x^{3}+5\right)^{7}+C$

x	0	25	30	50
$f(x)$	4	6	8	12

4. The values of a continuous function f for selected values of x are given in the table above. What is the value of the left Riemann sum approximation to $\int_{0}^{50} f(x) d x$ using the subintervals $[0,25],[25,30]$, and $[30,50]$?
(A) 290
(B) 360
(C) 380
(D) 390
(E) 430

$$
f(x)= \begin{cases}x^{2} \sin (\pi x) & \text { for } x<2 \\ x^{2}+c x-18 & \text { for } x \geq 2\end{cases}
$$

5. Let f be the function defined above, where c is a constant. For what value of c, if any, is f continuous at $x=2$?
(A) 2
(B) 7
(C) 9
(D) $4 \pi-4$
(E) There is no such value of c.
