Show all work that leads to your answers!

1. Free response

Question 3

t (seconds)	0	3	5	8	12
k(t) (feet per second)	0	5	10	20	24

Kathleen skates on a straight track. She starts from rest at the starting line at time t = 0. For $0 < t \le 12$ seconds, Kathleen's velocity k, measured in feet per second, is differentiable and increasing. Values of k(t) at various times t are given in the table above.

- (a) Use the data in the table to estimate Kathleen's acceleration at time t = 4 seconds. Show the computations that lead to your answer. Indicate units of measure.
- (b) Use a right Riemann sum with the four subintervals indicated by the data in the table to approximate $\int_0^{12} k(t) dt$. Indicate units of measure. Is this approximation an overestimate or an underestimate for the value of $\int_0^{12} k(t) dt$? Explain your reasoning.
- (c) Nathan skates on the same track, starting 5 feet ahead of Kathleen at time t = 0. Nathan's velocity, in feet per second, is given by $n(t) = \frac{150}{t+3} 50e^{-t}$. Write, but do not evaluate, an expression involving an integral that gives Nathan's distance from the starting line at time t = 12 seconds.
- (d) Write an expression for Nathan's acceleration in terms of t.

Multiple Choice

$$1. \qquad \int \left(5e^{2x} + \frac{1}{x}\right) dx =$$

(A)
$$\frac{5}{2}e^{2x} + \frac{2}{x^2} + C$$

(B)
$$\frac{5}{2}e^{2x} + \ln|x| + C$$

(C)
$$5e^{2x} + \frac{2}{x^2} + C$$

(D)
$$5e^{2x} + \ln|x| + C$$

(E)
$$10e^{2x} - \frac{1}{x^2} + C$$

- 2. If $f(x) = \sqrt{x} + \frac{3}{\sqrt{x}}$, then f'(4) =

- (A) $\frac{1}{16}$ (B) $\frac{5}{16}$ (C) 1 (D) $\frac{7}{2}$ (E) $\frac{49}{4}$
- $3. \qquad \int x^2 \left(x^3 + 5\right)^6 dx =$
 - (A) $\frac{1}{3}(x^3+5)^6+C$
 - (B) $\frac{1}{3}x^3\left(\frac{1}{4}x^4 + 5x\right)^6 + C$
 - (C) $\frac{1}{7}(x^3+5)^7+C$
 - (D) $\frac{3}{7}x^2(x^3+5)^7+C$
 - (E) $\frac{1}{21}(x^3+5)^7+C$

x	0	25	30	50
f(x)	4	6	8	12

- 4. The values of a continuous function f for selected values of x are given in the table above. What is the value of the left Riemann sum approximation to $\int_0^{50} f(x)dx$ using the subintervals [0, 25], [25, 30], and [30, 50]?
 - (A) 290
- (B) 360
- (C) 380
- (D) 390
- (E) 430

$$f(x) = \begin{cases} x^2 \sin(\pi x) & \text{for } x < 2\\ x^2 + cx - 18 & \text{for } x \ge 2 \end{cases}$$

- 5. Let f be the function defined above, where c is a constant. For what value of c, if any, is f continuous at x = 2?
 - (A) 2
- (B) 7
- (C) 9
- (D) $4\pi 4$ (E) There is no such value of c.