

The graph of the velocity $v(t)$, in $\mathrm{ft} / \mathrm{sec}$, of a car traveling on a straight road, for $0 \leq t \leq 50$, is shown above. A table of values for $v(t)$, at 5 -second intervals of time t, is shown to the right of the graph.
a. During what intervals of time is the acceleration of the car positive? Give a reason for your answer.
b. Find the average acceleration of the car, in $\mathrm{ft} / \mathrm{sec}^{2}$, over the interval 0 $\leq \dagger \leq 50$.
c. Find one approximation for the acceleration of the car in $\mathrm{ft} / \mathrm{sec}^{2}$, at $\mathrm{t}=$ 40. Show the computations you used to arrive at your answer.
d. Approximate the integral from 0 to 50 of $v(t) d t$ with a Riemann sum, using the midpoints of five subintervals of equal length. Using correct units, explain the meaning of this integral.

\#2

Let f be the function with $\mathrm{f}(1)=4$ such that for all points (x, y) on the graph of the slope is given by $\frac{3 x^{2}+1}{2 y}$.
a. Find the slope of the graph of f at the point where $x=1$.
b. Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate f(1.2).
c. Find $f(x)$ by solving the separable differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ with the initial condition $f(1)=4$.
d. Use your solution from part (c) to find $f(1.2)$.

Consider the curve defined by $2 y^{3}+6 x^{2} y-12 x^{2}+6 y=1$.
a. Show that $\frac{d y}{d x}=\frac{4 x-2 x y}{x^{2}+y^{2}+1}$.
b. Write an equation of each horizontal tangent line to the curve.
c. The line through the origin with slope -1 is tangent to the curve at point P. Find the x - and y-coordinates of point P.

\#4

The graph of the function f, consisting of three line segments, is given below. Let

$$
g(x)=\int_{1}^{x} f(t) d t
$$

a. Compute $\mathrm{g}(4)$ and $\mathrm{g}(-2)$.
b. Find the instantaneous rate of change of g, with respect to x, at x $=1$.
c. Find the absolute minimum value of g on the closed interval [$2,4]$. Justify your answer.
d. The second derivative of g is not defined at $x=1$ and $x=2$. How many of these values are x-coordinates of points of inflection of the graph of f ? Justify your answer.
(a) Acceleration is positive on $(0,35)$ and $(45,50)$ because the velocity $v(t)$ is increasing on $[0,35]$ and $[45,50]$
(b) Avg. Acc. $=\frac{v(50)-v(0)}{50-0}=\frac{72-0}{50}=\frac{72}{50}$
or $\quad 1.44 \mathrm{ft} / \mathrm{sec}^{2}$
(c) Difference quotient; e.g.

$$
\begin{aligned}
& \frac{v(45)-v(40)}{5}=\frac{60-75}{5}=-3 \mathrm{ft} / \mathrm{sec}^{2} \text { or } \\
& \frac{v(40)-v(35)}{5}=\frac{75-81}{5}=-\frac{6}{5} \mathrm{ft} / \mathrm{sec}^{2} \text { or } \\
& \frac{v(45)-v(35)}{10}=\frac{60-81}{10}=-\frac{21}{10} \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$

-or-
Slope of tangent line, e.g.
through $(35,90)$ and $(40,75): \frac{90-75}{35-40}=-3 \mathrm{ft} / \mathrm{sec}^{2}$
(d) $\int_{0}^{50} v(t) d t$
$\approx 10[v(5)+v(15)+v(25)+v(35)+v(45)]$
$=10(12+30+70+81+60)$

$$
=2530 \text { feet }
$$

This integral is the total distance traveled in feet over the time 0 to 50 seconds.
(a) $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$
$\left.\frac{d y}{d x}\right|_{\substack{x=1 \\ y=4}}=\frac{3+1}{2 \cdot 4}=\frac{4}{8}=\frac{1}{2}$
(b) $y-4=\frac{1}{2}(x-1)$
$f(1.2)-4 \approx \frac{1}{2}(1.2-1)$
$f(1.2) \approx 0.1+4=4.1$
(c) $2 y d y=\left(3 x^{2}+1\right) d x$
$\int 2 y d y=\int\left(3 x^{2}+1\right) d x$
$y^{2}=x^{3}+x+C$
$4^{2}=1+1+C$
$14=C$
$y^{2}=x^{3}+x+14$
$y=\sqrt{x^{3}+x+14}$ is branch with point $(1,4)$
$f(x)=\sqrt{x^{3}+x+14}$
(d) $f(1.2)=\sqrt{1.2^{3}+1.2+14} \approx 4.114$
(a) $6 y^{2} \frac{d y}{d x}+6 x^{2} \frac{d y}{d x}+12 x y-24 x+6 \frac{d y}{d x}=0$
$\frac{d y}{d x}\left(6 y^{2}+6 x^{2}+6\right)=24 x-12 x y$
$\frac{d y}{d x}=\frac{24 x-12 x y}{6 x^{2}+6 y^{2}+6}=\frac{4 x-2 x y}{x^{2}+y^{2}+1}$
(b) $\frac{d y}{d x}=0$
$4 x-2 x y=2 x(2-y)=0$
$x=0$ or $y=2$
When $x=0,2 y^{3}+6 y=1 ; y=0.165$
There is no point on the curve with y coordinate of 2 .
$y=0.165$ is the equation of the only horizontal tangent line.
(c) $y=-x$ is equation of the line.
$2(-x)^{3}+6 x^{2}(-x)-12 x^{2}+6(-x)=1$
$-8 x^{3}-12 x^{2}-6 x-1=0$
$x=-1 / 2, \quad y=1 / 2$
-or-
$\frac{d y}{d x}=-1$
$4 x-2 x y=-x^{2}-y^{2}-1$
$4 x+2 x^{2}=-x^{2}-x^{2}-1$
$4 x^{2}+4 x+1=0$
$x=-1 / 2, \quad y=1 / 2$
(a) $g(4)=\int_{1}^{4} f(t) d t=\frac{3}{2}+1+\frac{1}{2}-\frac{1}{2}=\frac{5}{2}$
$g(-2)=\int_{1}^{-2} f(t) d t=-\frac{1}{2}(12)=-6$
(b) $g^{\prime}(1)=f(1)=4$
(c) g is increasing on $[-2,3]$ and decreasing on [3, 4].

Therefore, g has absolute minimum at an endpoint of $[-2,4]$.
Since $g(-2)=-6$ and $g(4)=\frac{5}{2}$,
the absolute minimum value is -6 .
(d) One; $x=1$

On $(-2,1), g^{\prime \prime}(x)=f^{\prime}(x)>0$
On $(1,2), g^{\prime \prime}(x)=f^{\prime}(x)<0$
On $(2,4), g^{\prime \prime}(x)=f^{\prime}(x)<0$
Therefore $(1, g(1))$ is a point of inflection and $(2, g(2))$ is not.

