t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime}(t)=2$? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.

\#2

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the
 closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

\#3

Consider the differential equation $\frac{d y}{d x}=e^{y}\left(3 x^{2}-6 x\right)$. Let $y=f(x)$ be the particular solution to the differential equation that passes through $(1,0)$.
(a) Write an equation for the line tangent to the graph of f at the point $(1,0)$. Use the tangent line to approximate $f(1.2)$.
(b) Find $y=f(x)$, the particular solution to the differential equation that passes through $(1,0)$.

\#2

(a) $C^{\prime}(3.5) \approx \frac{C(4)-C(3)}{4-3}=\frac{12.8-11.2}{1}=1.6$ ounces $/ \mathrm{min}$
(b) C is differentiable $\Rightarrow C$ is continuous (on the closed interval) $\frac{C(4)-C(2)}{4-2}=\frac{12.8-8.8}{2}=2$
Therefore, by the Mean Value Theorem, there is at least one time $t, 2<t<4$, for which $C^{\prime}(t)=2$.
(c) $\frac{1}{6} \int_{0}^{6} C(t) d t \approx \frac{1}{6}[2 \cdot C(1)+2 \cdot C(3)+2 \cdot C(5)]$

$$
=\frac{1}{6}(2 \cdot 5.3+2 \cdot 11.2+2 \cdot 13.8)
$$

$$
=\frac{1}{6}(60.6)=10.1 \text { ounces }
$$

$\frac{1}{6} \int_{0}^{6} C(t) d t$ is the average amount of coffee in the cup, in ounces, over the time interval $0 \leq t \leq 6$ minutes.
(a) $x=6$ is the only critical point at which f^{\prime} changes sign from negative to positive. Therefore, f has a local minimum at $x=6$.
(b) From part (a), the absolute minimum occurs either at $x=6$ or at an endpoint.

$$
\begin{aligned}
f(0) & =f(8)+\int_{8}^{0} f^{\prime}(x) d x \\
& =f(8)-\int_{0}^{8} f^{\prime}(x) d x=4-12=-8 \\
f(6) & =f(8)+\int_{8}^{6} f^{\prime}(x) d x \\
& =f(8)-\int_{6}^{8} f^{\prime}(x) d x=4-7=-3 \\
f(8) & =4
\end{aligned}
$$

The absolute minimum value of f on the closed interval $[0,8]$ is -8 .
(c) The graph of f is concave down and increasing on $0<x<1$ and $3<x<4$, because f^{\prime} is decreasing and positive on these intervals.
(d) $g^{\prime}(x)=3[f(x)]^{2} \cdot f^{\prime}(x)$ $g^{\prime}(3)=3[f(3)]^{2} \cdot f^{\prime}(3)=3\left(-\frac{5}{2}\right)^{2} \cdot 4=75$
\#3
(a) $\left.\frac{d y}{d x}\right|_{(x, y)=(1,0)}=e^{0}\left(3 \cdot 1^{2}-6 \cdot 1\right)=-3$

An equation for the tangent line is $y=-3(x-1)$.

$$
f(1.2) \approx-3(1.2-1)=-0.6
$$

(b) $\frac{d y}{e^{y}}=\left(3 x^{2}-6 x\right) d x$
$\int \frac{d y}{e^{y}}=\int\left(3 x^{2}-6 x\right) d x$
$-e^{-y}=x^{3}-3 x^{2}+C$
$-e^{-0}=1^{3}-3 \cdot 1^{2}+C \Rightarrow C=1$
$-e^{-y}=x^{3}-3 x^{2}+1$
$e^{-y}=-x^{3}+3 x^{2}-1$
$-y=\ln \left(-x^{3}+3 x^{2}-1\right)$
$y=-\ln \left(-x^{3}+3 x^{2}-1\right)$
Note: This solution is valid on an interval containing

$$
x=1 \text { for which }-x^{3}+3 x^{2}-1>0 .
$$

